
Week 14 - Wednesday



 What did we talk about last time?
 Review of first third of course
 Big oh
 Calculating running time
 Graph basics
 Greedy algorithms
▪ Interval scheduling
▪ Shortest path
▪ Minimum spanning tree
▪ Huffman codes







 People with assorted eye colors live on an island. They are all perfect logicians: If a conclusion can 
be logically deduced, they will do it instantly. No one knows their own eye color. Every night at 
midnight, a ferry stops at the island. Any islanders who have figured out the color of their own eyes 
must leave the island, and the rest stay. Everyone can see everyone else at all times and keeps a 
count of the number of people they see with each eye color (excluding themselves), but they 
cannot otherwise communicate. Everyone on the island knows these rules.

 On this island there are 100 blue-eyed people, 100 brown-eyed people, and the Guru (she happens 
to have green eyes). So any given blue-eyed person can see 100 people with brown eyes and 99 
people with blue eyes (and one with green), but that does not tell him his own eye color; as far as he 
knows the totals could be 101 brown and 99 blue. Or 100 brown, 99 blue, and he could have red 
eyes.

 The Guru is allowed to speak once, at noon, on one day in all their endless years on the island. 
Standing before the islanders, she says the following:

"I can see someone who has blue eyes."

 Who leaves the island, and on what night?





 Final exam:
 Wednesday, April 24, 2024
 8:00 – 10:00 a.m.

 It will mostly be short answer
 There will be diagrams
 There might be a matching problem
 There will likely be a (simple) proof
 It will be 50% longer than previous exams, but you will have 

100% more time





 Divide and conquer algorithms are ones in which we divide a 
problem into parts and recursively solve each part

 Then, we do some work to combine the solutions to each part 
into a final solution

 Divide and conquer algorithms are often simple
 However, their running time can be challenging to compute 

because recursion is involved



 If there are two elements in the array or fewer then
 Make sure they're in order

 Else
 Divide list into two halves
 Recursively merge sort the two halves
 Merge the two sorted halves together into the final list



 The algorithm is simple, but recursive
 We'll use T(n) to describe the total running time recursively
 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐, 𝑛𝑛 ≤ 2

 𝑇𝑇 𝑛𝑛 ≤ 2𝑇𝑇 𝑛𝑛
2

+ 𝑐𝑐𝑛𝑛, 𝑛𝑛 > 2
 Is it really the same constant c for both?
 No, but it's an inequality, so we just take the bigger one



 Each time, the recursion 
cuts the work in half while 
doubling the number of 
problems
 The total work at each level 

is thus always cn
 To go from n to 2, we have 

to cut the size in half (log2
n) – 1 times

cn

cn/2 cn/2

cn/4 cn/4cn/4 cn/4

cn

cn

cn



 Defining a sequence recursively as with Mergesort is called a 
recurrence relation

 The initial conditions give the starting point
 Example:
 Initial conditions
▪ T(0) = 1
▪ T(1) = 2

 Recurrence relation
▪ T(k) = T(k-1) + 3T(k-2) + k, for all integers k ≥ 2

 Find T(2), T(3), and T(4)



 We want to be able to turn recurrence relations into explicit 
formulas whenever possible

 Often, the simplest way is to find these formulas by iteration
 The technique of iteration relies on writing out many 

expansions of the recursive sequence and looking for patterns
 That's it



 Intelligent pattern matching gets you a long way
 However, it is sometimes necessary to substitute in some 

known formula to simplify a series of terms
 Recall
 Geometric series: 1 + r + r2 + … + rn = (rn+1 – 1)/(r – 1) 
 Arithmetic series: 1 + 2 + 3 + … + n = n(n + 1)/2



 We have seen that recurrence relations of the form  𝑇𝑇 𝑛𝑛 ≤
2𝑇𝑇 𝑛𝑛

2
+ 𝑐𝑐𝑛𝑛 are bounded by O(n log n)

 What about 𝑇𝑇 𝑛𝑛 ≤ 𝑞𝑞𝑇𝑇 𝑛𝑛
2

+ 𝑐𝑐𝑛𝑛 where q is bigger than 2 
(more than two sub-problems)?

 There will still be log2n levels of recursion
 However, there will not be a consistent cn amount of work at 

each level



 In general, it's

𝑇𝑇 𝑛𝑛 ≤ �
𝑗𝑗=0

log2 𝑛𝑛−1 𝑞𝑞
2

𝑗𝑗
𝑐𝑐𝑛𝑛 = 𝑐𝑐𝑛𝑛 �

𝑗𝑗=0

log2 𝑛𝑛−1 𝑞𝑞
2

𝑗𝑗

 This is a geometric series, where 𝑟𝑟 = 𝑞𝑞
2

𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐𝑛𝑛
𝑟𝑟log2 𝑛𝑛 − 1
𝑟𝑟 − 1

≤ 𝑐𝑐𝑛𝑛
𝑟𝑟log2 𝑛𝑛

𝑟𝑟 − 1



𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐𝑛𝑛
𝑟𝑟log2 𝑛𝑛 − 1
𝑟𝑟 − 1

≤ 𝑐𝑐𝑛𝑛
𝑟𝑟log2 𝑛𝑛

𝑟𝑟 − 1
 Since r – 1 is a constant, we can pull it out

 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐
𝑟𝑟−1

𝑛𝑛𝑟𝑟log2 𝑛𝑛

 For 𝑎𝑎 > 1 and 𝑏𝑏 > 1, 𝑎𝑎log 𝑏𝑏 = 𝑏𝑏log 𝑎𝑎, thus 𝑟𝑟log2 𝑛𝑛 = 𝑛𝑛log2 𝑟𝑟 =
𝑛𝑛log2(𝑞𝑞/2) = 𝑛𝑛(log2 𝑞𝑞)−1

 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐
𝑟𝑟−1

𝑛𝑛 � 𝑛𝑛(log2 𝑞𝑞)−1 ≤ 𝑐𝑐
𝑟𝑟−1

𝑛𝑛log2 𝑞𝑞 which is 
𝑂𝑂 𝑛𝑛log2 𝑞𝑞





 What if we wanted to measure the similarity of one ranking to 
another ranking?

 Inversions are pairs of elements that are out of order in one 
ranking with respect to the other

 Formally, for indices i < j, there's an inversion if ranking ri > rj



 If two rankings are the same, they would have no inversions
 If two rankings were sorted in opposite directions, they would 

have 
𝑛𝑛
2 = 𝑛𝑛!

𝑛𝑛−2 !2!
= 𝑛𝑛(𝑛𝑛−1)

2
inversions



 You can visualize inversions as the number of line segments 
crossings if you match up items in one list with the other

 A total of 4 inversions

1. American Fiction
2. Barbie
3. Oppenheimer
4. Poor Things

1. Barbie
2. Poor Things
3. Oppenheimer
4. American Fiction



 Of course!
 We can borrow from the Mergesort algorithm
 Divide the problem in half
 Then, we will get the number of inversions in the first half and in 

the second half
 Are we done?
 No, we also have to count the inversions between the first half and the 

second half
 Those are exactly those elements in the first half that are bigger than 

elements from the second half
 We can find those during the merge process



 Maintain a Current pointer into each list, initialized to point to 
the front elements

 Set Count = 0
 While both lists have elements
 Let ai and bj be the elements pointed to by the Current pointer
 Append the smaller one to the output list
 If bj is smaller then
▪ Increment Count by the number of elements left in A

 Advance the Current pointer in the list that had the smaller element



 If the list has one element then
 Return 0 inversions and the list L

 Else
 Divide the list into two halves:
▪ A has the first 𝑛𝑛

2
elements

▪ B has the remaining 𝑛𝑛
2

elements

 (inversionsA, A) = Sort-and-Count(A)
 (inversionsB, B) = Sort-and-Count(B)
 (inversions, L) = Merge-and-Count(A, B)
 Return inversions + inversionsA + inversionsB and sorted list L



 Since Merge-and-Count is bounded by O(n), the running time 
for Sort-and-Count is clearly:
 𝑇𝑇(1) ≤ 𝑐𝑐

 𝑇𝑇 𝑛𝑛 ≤ 2𝑇𝑇 𝑛𝑛
2

+ 𝑐𝑐𝑛𝑛, for 𝑛𝑛 ≥ 2
 By the same analysis as for Mergesort, T(n) is O(n log n)





 Imagine you have a set of points in a 2D plane
 How do you find the  pair of points that's closest?
 This is a fundamental problem in the area of computational 

geometry
 As usual,  you could look at all pairs of points



 To make things simpler, we assume that  no two points have 
the same x-coordinate or y-coordinate

 Think about a one-dimensional approach:
 Sort the list by x-value
 The two closest points must be next to each other in the list



 Since the name of the chapter is divide and conquer, that's 
what we do

 First, sort all of the points by increasing x-values, calling this 
list Px

 Then, sort all of the points by increasing y-values, calling this 
list Py

 Find the median point in Px and drop a line through it, dividing 
the points into those with smaller x (set Q) and larger x (set R)

 Recursively find the closest pair of points on the left side and 
the closest pair of points on the right side



LQ R



 We have magically recursively found the closest pair of points 
in Q and the closest pair in R
 Between those two pairs, let's say the closest has distance δ

 But what if the closest pair straddles L, with one point in Q
and the other in R?

 We do a linear scan of Py, the list of points sorted by y values, 
making a new y-sorted list of points Sy whose x-coordinate is 
within δ of L



 We scan through the list Sy
 For each element, we compute the distance between it and 

the next 15 elements
 We find the closest distance
 If the closest distance is smaller than δ, that's the true closest 

pair
 Otherwise, we use the smaller of the pairs from Q and R



Q R

δ

δ/2
δ/2

δ



 Pre-processing:
 Sort the points by x: O(n log n)
 Sort the points by y: O(n log n)

 Recursion:
 If there are three or fewer points, find the closest pair by comparing all pairs
 Otherwise, divide into sets Q and R: O(n) time
 Make lists Qx, Qy, Rx, and Ry, giving the points in Q and R sorted by x and y, 

respectively: O(n) time
 Construct Sy: O(n) time
 For every point in Sy (of which there can only be n), compute the distance to the 

next 15 points: O(n)
 𝑇𝑇 𝑛𝑛 ≤ 2𝑇𝑇 𝑛𝑛

2
+ 𝑐𝑐𝑛𝑛 which is 𝑂𝑂(𝑛𝑛 log 𝑛𝑛)





 We want 𝑥𝑥1𝑦𝑦1 � 2𝑛𝑛 + 𝑥𝑥1𝑦𝑦0 + 𝑥𝑥0𝑦𝑦1 � 2
𝑛𝑛
2 + 𝑥𝑥0𝑦𝑦0

 What if we compute
 𝑎𝑎 = 𝑥𝑥1 + 𝑥𝑥0 � 𝑦𝑦1 + 𝑦𝑦0

= 𝑥𝑥1𝑦𝑦1 + 𝑥𝑥0𝑦𝑦1 + 𝑥𝑥1𝑦𝑦0 + 𝑥𝑥0𝑦𝑦0
 𝑏𝑏 = 𝑥𝑥1𝑦𝑦1
 𝑐𝑐 = 𝑥𝑥0𝑦𝑦0

 Then, 𝑏𝑏 � 2𝑛𝑛 + 𝑎𝑎 − 𝑏𝑏 − 𝑐𝑐 � 2
𝑛𝑛
2 + 𝑐𝑐 =

 𝑥𝑥1𝑦𝑦1 � 2𝑛𝑛 + 𝑥𝑥1𝑦𝑦0 + 𝑥𝑥0𝑦𝑦1 � 2
𝑛𝑛
2 + 𝑥𝑥0𝑦𝑦0



 We do two additions before the multiplies: O(n)
 We do three recursive multiplies of n/2-bit numbers
 We do two additions and two subtractions after the 

multiplies: O(n)

 𝑇𝑇 𝑛𝑛 ≤ 3𝑇𝑇 𝑛𝑛
2

+ 𝑐𝑐𝑛𝑛
 Which is 𝑂𝑂 𝑛𝑛log2 3 ≈ 𝑂𝑂 𝑛𝑛1.59 , which is better!





1 ,1  where  )()( >≥+





= banf

b
n

aTnT

 For recursion that on a problem size n that:
 Makes a recursive calls
 Divides the total work by b for each recursive call
 Does f(n) non-recursive work at each call 

 Its running time can be given in the following form, suitable 
for use in the Master Theorem:



 If 𝑓𝑓 𝑛𝑛 is O 𝑛𝑛log𝑏𝑏(𝑎𝑎)−𝜖𝜖

for some constant 𝜖𝜖 > 0, then

𝑇𝑇 𝑛𝑛 is Θ 𝑛𝑛log𝑏𝑏(𝑎𝑎)



 If 𝑓𝑓 𝑛𝑛 is Θ 𝑛𝑛log𝑏𝑏(𝑎𝑎) log𝑘𝑘 𝑛𝑛
for some constant 𝑘𝑘 ≥ 0, then

𝑇𝑇 𝑛𝑛 is Θ 𝑛𝑛log𝑏𝑏(𝑎𝑎) log𝑘𝑘+1 𝑛𝑛



 If 𝑓𝑓 𝑛𝑛 is Ω 𝑛𝑛log𝑏𝑏(𝑎𝑎)+𝜖𝜖

for some constant 𝜖𝜖 > 0, and if

𝑎𝑎𝑓𝑓
𝑛𝑛
𝑏𝑏

≤ 𝑐𝑐𝑓𝑓(𝑛𝑛)
for some constant 𝑐𝑐 < 1 and sufficiently large 𝑛𝑛, 
then

𝑇𝑇 𝑛𝑛 is Θ 𝑓𝑓(𝑛𝑛)





 𝑔𝑔𝑘𝑘 = 𝑔𝑔𝑘𝑘−1 + 𝑘𝑘 for all integers k ≥ 1
 𝑔𝑔0 = 7

 Give an explicit formula for this recurrence relation
 Hint: Use the method of iteration



 T(n) = 64T(n/4) + 12n2

 Sometimes it helps to think about how I create questions:
 Generate a recurrence relation that fits Case 1
 Generate a recurrence relation that fits Case 2
 Generate a recurrence relation that fits Case 3





 The weighted interval scheduling problem extends interval 
scheduling by attaching a weight (usually a real number) to each 
request

 Now the goal is not to maximize the number of requests served 
but the total weight

 Our greedy approach is worthless, since some high value requests 
might be tossed out

 We could try all possible subsets of requests, but there are 
exponential of those

 Dynamic programming will allow us to save parts of optimal 
answers and combine them efficiently



 We have n requests labeled 1, 2,…, n
 Request i has a start time si and a finish time fi
 Request i has a value vi
 Two intervals are compatible if they don't overlap



 Let's go back to our intuition from the unweighted problem
 Imagine that the requests are sorted by finish time so that f1 ≤ 

f2 ≤ … ≤ fn
 We say that request i comes before request j if i < j, giving a 

natural left-to-right order
 For any request j, let p(j) be the largest index i < j such that 

request i ends before j begins
 If there is no such request, then p(j) = 0



Index

1

2

3

4

5

6

p(1) = 0

p(2) = 0

p(3) = 1

p(4) = 0

p(5) = 3

p(6) = 3

2

4

4

7

2

1



 Iterative-Compute-Opt
 M[0] = 0
 For j = 1 up to n
▪ M[j] = max(vj + M[p(j)], M[j – 1])

 Algorithm is O(n)



 Find-Solution(j, M)
 If j = 0 then
▪ Output nothing

 Else if vj + M[p(j)] ≥ M[j – 1] then
▪ Output j together with the result of Find-Solution(p(j))

 Else
▪ Output the result of Find-Solution(j – 1)

 Algorithm is O(n)



 The key element that separates dynamic programming from 
divide-and-conquer is that you have to keep the answers to 
subproblems around

 It's not simply a one-and-done situation
 Based on which intervals overlap with which other intervals, 

it's hard to predict when you'll need an earlier M[j] value
 Thus, dynamic programming can often give us polynomial 

algorithms but with linear (and sometimes even larger) space 
requirements



 Weighted interval scheduling follows a set of informal guidelines 
that are essentially universal in dynamic programming solutions:
1. There are only a polynomial number of subproblems
2. The solution to the original problem can easily be computed from (or is 

one of) the solutions to the subproblems
3. There is a natural ordering of subproblems from "smallest" to "largest"
4. There is an easy-to-compute recurrence that lets us compute the 

solution to a subproblem from the solutions of smaller subproblems



 Let's say that we have a series of n jobs that we can run on a 
single machine

 Each job i takes time wi
 We must finish all jobs before time W
 We want to keep the machine as busy as possible, working on 

jobs until as close to W as we can



 If job n is not in the optimal set, OPT(n, W) = OPT(n – 1, W)
 If job n is in the optimal set, OPT(n, W) = wn + OPT(n – 1, W –

wn)
 We can make the full recurrence for all possible weight values:
 If w < wi, then OPT(i, w) = OPT(i – 1, w)
 Otherwise, OPT(i, w) = max(OPT(i – 1, w), wi + OPT(i – 1, w – wi))



 Create 2D array M[0…n][0…W]
 For w from 1 to W
 Initialize M[0][w] = 0

 For i from 1 to n
 For w from 0 to W
▪ If w < wi, then 
▪OPT(i, w) = OPT(i – 1, w)

▪ Else
▪OPT(i, w) = max(OPT(i – 1, w), wi + OPT(i – 1, w – wi))

 Return M[n][W]



 We're building a big 2D array
 Its  size is nW
 n is the number of items
 W is the maximum weight
 Actually, it's got one more row and one more column, just to make 

things easier
 The book makes this array with row 0 at the  bottom
 I've never seen anyone else do that
 I'm going to put row 0 at the  top



0 0 0 0 0 0 0 0 0 0 0 0 0

1 0

2 0

0

0

0

i – 1 0

i 0

0

0

0

n 0

0 1 2 w- wi w W



 The algorithm has a simple nested loop
 The outer loop runs n + 1 times
 The inner loop runs W + 1 times

 The total running time is O(nW)
 The space needed is also O(nW)
 Note that this time is not polynomial in terms of n
 It's polynomial in n and W, but W is the maximum weight
 Which could be huge!

 We call running times like this pseudo-polynomial
 Things are fine if W is similar to n, but it could be huge!



 Weights: 1, 8, 4, 2, 10
 Maximum: 15
 Create the table to find all of the optimal values that include 

items 1, 2,…, i for every possible weight w up to 15



i wi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0

2 8 0

3 4 0

4 2 0

5 10 0



 The knapsack problem is a classic problem that extends 
subset sum a little

 As before, there is a maximum capacity W and each item has 
a weight wi

 Each item also has a value vi
 The goal is to maximize the value of objects collected without 

exceeding the capacity
 …like Indiana Jones trying to put the most valuable objects 

from a tomb into his limited-capacity knapsack



 The knapsack problem is really the same problem, except that 
we are concerned with maximum value instead of maximum 
weight

 We need only to update the recurrence to keep the maximum 
value:
 If w < wi, then OPT(i, w) = OPT(i – 1, w)
 Otherwise, OPT(i, w) = max(OPT(i – 1, w), vi + OPT(i – 1, w – wi))



 Items (wi, vi):
 (6, 20)
 (4, 10)
 (3, 9)
 (2, 5)

 Maximum weight: 8
 Create the table to find all of the optimal values that include 

items 1, 2,…, i for every possible weight w up to 8



i wi vi 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0 0 0

1 6 20 0

2 4 10 0

3 3 9 0

4 2 5 0



 An alignment is a list of matches between characters in strings 
X and Y that doesn't cross

 Consider:
 stop-
 -tops

 This alignment is (2,1), (3,2), (4,3)



 Some optimal alignment will have the lowest cost
 Cost:
 Gap penalty δ > 0, for every gap
 Mismatch cost αpq for aligning p with q
▪ αpp is presumably 0 but does not have to be

 Total cost is the sum of the gap penalties and mismatch costs



 Let OPT(i, j) be the minimum cost of an alignment of the first i
characters in X to the first j characters in Y

 In case 1, we would have to pay a matching cost of matching 
the character at i to j

 In cases 2 and 3, you will pay a gap penalty

OPT 𝑖𝑖, 𝑗𝑗 = min�
𝛼𝛼𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗 + OPT 𝑖𝑖 − 1, 𝑗𝑗 − 1

𝛿𝛿 + OPT 𝑖𝑖 − 1, 𝑗𝑗
𝛿𝛿 + OPT 𝑖𝑖, 𝑗𝑗 − 1



 We do our  usual thing
 Build up a table of values with m + 1 rows and n + 1 columns
 In row o, column i has value iδ to build up strings from the 

empty string
 In column o, row i has value iδ to build up strings from the 

empty string
 The other entries (i,j) can be computed from (i -1, j – 1), (i – 1, 

j), (i, j – 1)



 Create array A[0...m][0...n]
 For i from 0 to m
 Set A[i][0]= iδ

 For j from 0 to n
 Set A[0][ j]= jδ

 For i from 1 to m
 For j from 1 to n

▪ Set A[i][j]= min(𝛼𝛼𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗+A[i-1][j-1], δ + A[i-1][j],

δ + A[i][j- 1])
 Return A[m][n]



0 0 δ 2δ … (j -1)δ jδ … nδ

1 δ

2 2δ

…

i – 1 (i-1)δ

i iδ

…

m mδ

0 1 2 … j - 1 j … n



 Find the minimum cost to  align:
 "tarnish"
 "strength"

 The cost of an insertion (or deletion) δ is 1
 The cost of replacing any letter with a different letter is 1
 The cost of "replacing" any letter with itself is 0



t a r n i s h

0 1 2 3 4 5 6 7

s 1

t 2

r 3

e 4

n 5

g 6

t 7

h 8







 Review final third of the course
 Flow networks
 NP-completeness
 Approximation algorithms



 Finish Assignment 7
 Due Friday by midnight

 Review chapters 7, 8, and 11
 Final exam:
 Wednesday, April 24, 2024
 8:00 – 10:00 a.m.


	COMP 4500
	Last time
	Questions?
	Assignment 7
	Logical warmup
	Review
	Final exam
	Recurrence Relations
	Divide and conquer
	Mergesort algorithm
	Time for mergesort
	Intuition about mergesort recursion
	Recursively defined sequences
	Finding explicit formulas by iteration
	Employing outside formulas
	Further recurrence relations
	Converting to summation
	Final bound
	Counting Inversions
	Ranking similarity
	Minimum and maximum inversions
	Visualization of inversions
	Can we do better than O(n2)?
	Merge-and-Count(A, B)
	Sort-and-Count(L)
	Running time
	Closest Pair of Points
	Closest pair of points
	Designing the algorithm
	Divide
	Divide points
	…and…
	…conquer!
	Divide points
	Running time
	Integer Multiplication
	We need a trick
	Running time
	Master Theorem
	Basic form of the Master Theorem
	Case 1
	Case 2
	Case 3
	Example Problems
	Recursive sequence example
	Sample master theorem problem
	Dynamic Programming
	Weighted interval scheduling
	Notation
	Designing the algorithm
	p(j) examples
	Iterative solution to find value  of weighted interval scheduling
	Algorithm for solution
	Why is this dynamic programming?
	Informal guidelines
	Subset sum
	A new recurrence
	Subset-Sum(n,W)
	What does that look like?
	Table M of OPT values
	Running time
	Subset sum example
	Table to fill in
	Knapsack
	An easy extension
	Knapsack example
	Fill in the table
	Alignment
	Alignment cost
	Formulating the recurrence
	Now what?
	Alignment(X,Y)
	Table A of OPT values
	Sequence alignment example
	Fill in the table
	Quiz
	Upcoming
	Next time…
	Reminders

